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Christopher A. Kennedy
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Introduction

Choosing the appropriate form of the governing equation set to solve in
fluid dynamics is the first step in the solution of a particular problem. In
the case of gas mixtures, the governing equations become rather formidable
and a complete listing of the equations in their various forms and methods
to evaluate the transport coefficients is difficult to find. This paper seeks to
compile common as well as less well known results in a single document.

Forms for the various quantities involved in multicomponent hydrodynam-
ics may be derived either phenomenologically® '® 1% or by methods of kinetic
theory®" 1. Ideally, the full limitations of the derivation need to be stated a
priori. For this reason, we choose the kinetic theory approach. In addition,
kinetic theory allows us to explicitly calculate the relevant transport coeffi-
cients. This paper will focus on the issue of complications to the governing
equations because of multiple species but will not concern itself with issue of in-
ternal degrees of freedom of the molecules leading to relaxation phenomena3!
or antisymmetric stress®” ?*, exothermic heat release that may cause high-
energy “tails” to the distribution function of particle velocities?® and differing

2 or the effects of ternary, quartenary, etc.

temperatures of certain species
collisions found in dense gases'* and liquids. Having made those severe restric-
tions, we also limit discussion to small perturbations from equilibrium where
one may safely assume that the first nonequilibrium expression derived from
the Chapman-Enskog-Burnett® method of approximating the solution to the
Boltzmann equation is valid. In terms of classical irreversible thermodynamics,
“local” equilibrium prevails. This means that although the flow is not in equi-
librium, locally, equilibrium thermodynamic variables are still defined. Results
using the Chapman-Enskog-Burnett method are not valid for severe spatial
gradients and for sufficiently high frequency phenomena. This amounts to no
variation in quantities whose characteristic lengths and times are of the order
of the mean free path or the time between collisions. Collision times are also
presumed to be much smaller than the time between collisions. In cases where
more severe phenomena occur, local equilibrium does not exist and unique def-
initions for the nonequilibrium temperature and entropy are not forthcoming?.
This is the topic of “Extended Irreversible Thermodynamics?® 12”7, Techniques



such as Grad’s moment method®, which allow for terms such as the heat flux
vector, stress tensor, and species flux to become independent variables, are
likely to lead to more accurate approximations to the Boltzmann equation in
situations far from equilibrium?®. Although the governing equations derived
by Grad’s method are more complicated than those traditionally confronted,
they are likely to be essential in describing the finer points of polyatomic and
reacting dilute gases®® as well as rarefied gases®® where the Knudsen number
may no longer be considered a small expansion parameter.

It is the goal of this paper to summarize the various relationships between
equations describing conservation of energy for a dilute, monatomic, nonreact-
ing gas in local equilibrium. The gas is treated as nonrelativistic, not subject
to magnetic or electric fields, or radiative effects.

Energy Equations

Using the first nonequilibrium approximation according to the Chapman-
Enskog-Burnett theory in the kinetic theory of gases®'® (the Navier-Stokes
level),

ncs ncs

Ga = pO_(hYiVia) = XoVaT —pd_ Df dig (1)
i=1 i=1
= Pi(hi}/if/;a)‘FQQ(red) (2)
Via = —fD{.‘fdja - DIv,(n T) (3)
=1
dia = VoXi+(Xi—Y)Va(ln p) +° [fm §Yfm] (4)
Opa = —pdag + Au88ap + 2uDgp (5)

where ¢ and j are species indicies, o and 3 are spatial indicies, ncs is the
number of chemical species, ¢, is the heat flux vector, gq(req) is the reduced
heat flux vector, V., is the diffusion velocity, o, is the stress tensor, d;, is the
diffusion driving force vector, DT is the thermal diffusion coefficient, DM is the
multicomponent diffusion coefficient, Ag is the partial thermal conduct1v1ty, Ay

is the second coefficient of viscosity, p is the shear viscosity, X; is the mole
fraction, Y; is the mass fraction, h; is the partial enthalpy per unit mass, p
is the pressure, T is the temperature, p is the density, fi, is the body force
per unit mass, 8 is the dilatation, 8,4 is the kronicker delta, and D,g is the
rate of deformation tensor. Several comments about these terms are in order.
There are two different definitions in the literature for the multicomponent
diffusion and thermal diffusion coefficients, those of Waldmann® and those
of Curtiss et. al.* 1€, It is essential that readers be aware of which one they
are confronting at any given moment. We chose those of Waldmann for their



simplicity?® ° and their straightforward correspondence to coefficients found in

linear irreversible thermodynamics'? ', For the second coefficient of viscosity,
Stokes hypothesis holds rigorously and we may use pg = (A, + %u) = 0, where
pp is the bulk viscosity. Note that the partial thermal conductivity is not the
conductivity that is measured in experiments because thermal diffusion effects
can not be completely isolated. We also note that all diffusion velocities and
diffusion driving force vectors are not independent but are related through

ncs ncs

D ViVie=0; Y dia=0 (6)
i=1

=1

By defining the velocity gradient tensor as

Lag = v,guo, (7)
the rate of deformation tensor and its deviator are given by
1 0 1
Dop = 5 (Lap + Lga) 5 Dag= Das — 70bap (8)

where u, is the barycentric, hydrodynamic, or center-of-mass velocity of the
gas. It will also be useful to write out the equations of state (9), species
continuity (10), overall continuity (11), and momentum conservation (12) for
future reference;

ncs necs . 0
P =nkT = (Z n,—) KT = (Z %) RT = ”?VT — pRT  (9)
=1 ]

DY; ~
: . 1/ — O
Ptk Vi (pYiVi) = & (10)
Dp
r 9 = 11
i TP 0 (11)
Dua ncs
"o = Vs (0sa)+ ) Yifia (12)

1=1

where the reaction rate, W;, is presumed to vanish and n and k are the number
of atoms per unit volume and Boltzmann’s constant. The conservative forms
of equations (10) and (12) may be obtained by simply adding zero to both
equations in the form of Eq. (11) times Y; and u,, respectively. Use of the
following relations has been made in order to transform the equation of state;
no= . in, pio= nimg, p = 37<] pi, where m,; being the mass per atom,
Yi=2 X, =% R=1% R =kN, W, = Nym;, where W;, W, R°, N, are
the atomic weight of species ¢, the average atomic weight of the mixture, the

universal gas constant, and Avogadro’s number. Clearly 371 X; = Y7 Y, =
L.
The mole and mass fractions may be related by,
Y,
A X:W;.
Xo= = Y= S (13)

(i ) (LR XaWe)



and the average molecular weight, W, is given by

1 nes
W= = S(XW 14
(ZZ’CSI Wk) kz_:l k k) ( )

These may be related through

W Y,

Equations for the heat flux vector and diffusion vector appear in many

different, but equivalent forms. Beginning with the expression?® 17 16
nes XX,
3 DBJ[Dy—DjF{] =6y — Y, (16)
=1 )

where DB is the binary diffusion coefficient, we may rewrite the diffusion
velocity equatlon (3) as the Stefan-Maxwell equation (17) using 375 kF = 0
and Y7 dip =0 as

XX Gy Vi) = o+ V(0 T) an
1=1 i
= din+ Y XiX;alLV,(ln T) (18)
i=1

where the thermal diffusion ratios, k7, and antisymmetrical thermal diffusion

factors, a”, are defined by

ncs ncs

S D¥kT = DI k;fzzlx,-xja;ﬂ (19)
o

‘ 7%
1=1

or, equivalently, using (16),

nes X X DIT - DT
K =Zl i S (Di = D) s oy = =55 (20)
J= 7

Because there is no explicit mole fraction dependence in the thermal diffusion
factors, they are sometimes the preferred term to describe thermal diffusion
effects. There are [ncs(nes + 1)/2] independent multicomponent diffusion co-
efficients and thermal (ncs — 1) independent thermal diffusion coefficients, as
can be seen in the relations

ncs ncs

S ViDY=0; S YV.Df =0 (21)
=1 1=1

1] 9 17

Each of the terms, DM, DB, and R;; %%fi are symmetrical, the last
iy
term being referred to as the impedance matrix. In the special case of a
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binary mixture, the multicomponent diffusion coeflicients are related to the
binary diffusion coefficient as

X1X2 X1X2 X1X2
"y, Y? R

Solving the Stefan-Maxwell equation (17) for d;, and then substituting the
result into the original expression for the heat flux vector (1) gives

DYh=55-Dn = 57D = 57 D (22)

o = ( A0+ Z’CTDT)V T—f—pz hY‘/,a

ncsncs(XXD . >

- P>

=1 3=1

(23)

An experimenter measuring thermal conductivity is likely to measure 1t
when all diffusion velocities vanish at steady state. For this reason the thermal
conductivity is defined in terms of the partial thermal conductivity as

A=Xo— ES%TDT (24)
T =1
so that in the absence of a diffusion velocity, the coefficient in front of V,T is
the value which is measured. With this we may write four equivalent forms of
the heat flux vector (1),

Go = —AV,T+Y (gnikT + pk,-T) Via (25)
=1
= —AVLT + Y (phiYi+ pk]) Via (26)
=1
= VLT 4pY (SX+ ) Vi (27)
=1

ncs . ncs ncs (X X DT

= AVT 493 kYl - Y

=1 i=1 j=1

a - Vm{)) (28)

where %kT is the enthalpy per atom, or with the use of the equation of state,
%’%, and h; is the partial enthalpy per unit mass. The relation between the
thermal and partial thermal conductivities may also be written in terms of the
thermal diffusion coefficients instead of the thermal diffusion ratios as

N f"Z”XXD (b7 - o) (29)
zl] 1
_ Ar—ff@‘f( r_pry’ (30)

=1 5=1

The energy equation may be found in the literature in many forms. It may

derived as® 1810



TOTAL ENERGY EQUATION (eo)

Deo ncs
P Dt

i=1

:—va'qa+vﬁ'(0ﬂa'ua)+pzi/ifia'(v;a+ua)

(31)

Dotting the momentum equation (12) with the center-of-mass velocity, uq,

yields
MECHANICAL ENERGY EQUATION (3uquq)

D (tata nes
%—2 =uoVg - (0pa) + PEYif"a " Ua
t i=1

p
and upon subtracting (32) from (31), we get

Dey D(E“iq“)_De
Dot "7 bt ~ Dt

or

INTERNAL ENERGY EQUATION (e)

D6 ncs
Dt

With the thermodynamic relation h = e + f;, one may obtain

Dh _De 1Dp pDp

Dt Dt " pDt Dt
and hence, with the aid of the continuity equation (11),
ENTHALPY EQUATION (h)

Dh DP ncs N
o Y, qu+7s: Lag+ 22 Y fio - Vi
Py %o+ 75 0+Dt+p§ f

Adding the mechanical energy equation to this gives
Dhy _ Dh D (=)
Dt Dt TP Di

or

TOTAL ENTHALPY EQUATION (ho)

= _va'ch+Uﬁa . Laﬁ+Pz}/ifia "7{0
i=1

(32)

(33)

(34)

(33)

(36)

(37)



Dh 6 ncs
Dto = -—VQ'Qa+vﬁ'(Tﬂa'U0) +pzyftor' Vza +u0!) (38)

The viscous stress tensor, 73,4, is given by

s = AbB6ag + 2uDas = ppb6as + 24 Dos (39)
or
Tpa = —Pap + Tpa (40)
and with it, we may define the viscous dissipation function, ®, as
®=715,:Log = A0* + 2uDgs: Dyg (41)
= pp6® + 2u DopDag (42)
By considering & = h(Y;,T,p) and e = e(Ys,T,p) in flows where local

equilibrium exists, we may write the total differentials of the enthalpy and
internal energy as>?

nes ( Oh oh oh

dh = (__) dYk+(———) dT+( ) ip (43)
kzzzl oYy Top or Yerp Jdp
net [ e de Oe

de = (_) dYk+(——) dT+( ) i (44)
k2=:1 aYk T.p BT Yi,p ap

These may be simplified using (Q@)Y = C,, the isobaric heat capacity,
P
(g%) Yip = = C,, the isochoric heat capacity, ( o% )T,p = hg, the partial enthalpy

per unit mass, (8‘9}‘,5 )T = hy ";7}:{:, where & is coefficient of isothermal
0
compressibility and « is coefﬁ01ent of thermal expansion at constant pressure
8h _ (1=oT) de _
( P>Yk.T o ( )YkT (p ) In addition, C, — C, = . For a
perfect gas, o = 7 and « = ; reducmg equations (43) and (44) to
dh = > hidY;+C,dT (45)
i=1
ncs X
de = E(,- £ )dY+CdT (46)

From equations (45), (46) and (35) we may write

Dh DT 2/ DY,
”E ‘”C”ﬁ+”2( ot) (47)
De _ ncs pX DY;
Dh De Dp
P =P T g PP (49)
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which enables use to derive

Dp nes (pX; DY, DT
D= P Z( Dt) i

(50)

With equations (36) and (47), one form of the temperature equation appears
ag?!

DT D
—; — “—Va'{a cx:La
+ pZ( )+ > Yifir Vi (51)

By eliminating the material derivative of the pressure from equation (51)
with equation (50) we have

TEMPERATURE EQUATION

DT ncs
pCo—— = —Vi o+ 0pa: aa+PEwa' ia

Dt
[

Dividing equation (50) by the perfect gas relation c% = (y — 1) results in

DT o nes (o X; DY; 1 Dp
TRy

P
C, % = - =P
Dt T (- 1) —1)2 oY, Dt —1) Dt

(v (53)

and with this we find
PRESSURE EQUATION

1 Dp '1]30 nes
- ‘"va'qa‘}"rﬁoz: aﬁ+PZtha' ia

-DDt (v -1)
ncecs p ncs pX,DK
pz( ) (7—1),-2(/% Dt) (54

The expression for the time rate of change of entropy per unit mass may
be written as

Ds
Ppr = Vo Ji+0°. (55)
where J? is the flux of entropy and is written in the context of linear irreversible
thermodynamics!® © 18 with the use of u; = h; — T's;, as

o — p X2 1Y Via
T

s
JO’
ncs

= pY ¥
i=1

ed)
T (56)
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where p; is the chemical potential per unit mass and s; is the partial entropy
per unit mass. Therefore,

ncs . A ncs
J2=p3 5YiVig — ]?v T - ZDTdm (57)
=1 .
and
ncs - A 1
Vo J! = V,- (,,Zsm/,-a) + Tz(v T)-(VaT) = Ve (AoVaT)

=1

+ ZDTd,a - = ZDT dia) (58)

ncs

- (sz,YV,a> + Y, (‘—1%) (59)

=1

Equations (58) and (59) represent the reversible change of entropy. The ir-
reversible component of the change in entropy is derived by noting that the
entropy generation is of the bilinear form

o = S UX
= Y LXX (60)

where J = LX, X, and L are the respective thermodynamic fluxes, thermo-
dynamic forces, and Onsager coefficients. Summation is considered over all
forces and ﬂuxes of the same tensorial order. The four thermodynamic forces
are the diffusion force (X( ), the thermal force (X{¥)), and the scalar (X(*?)

and tensor viscous forces (X('2)) given by’
Xfi) _I%Y}dia (61)
X0 = —%VQT (62)
X0 = —%9 (63)
XD = _%ﬁaﬁ (64)

Similarly, the six Onsager coeflicients are given by

1
LY = S/ TYYDYf (65)
LY =L@ = ,7Y;DT (66)
Lt = A\ T? (67)
Lt = upT (68)
L2 = 9uT (69)



and hence

ncs

39 = ZL“xd + LIXE = Y, (70)
I d,
I = LEIXY ,P( 9K = Gatred (71)
J(UO) — L(UO UO)XUd’_ —,UBO (72)
Jf]vﬁZ) — L(v2.v2)xz2ﬁ — _2/‘ ]o)aﬁ (73)
where
305,54+ 30D = 7, (74)

The irreversible generation of entropy, ¢, is then given by

ncs ncs

o = S LEAX® . x® +ZL‘*‘“X‘“ X +ZL‘“’X$Z’-XS’

=1 j=1 1=1
+ L(t,t)x(t) . x(t) + L(vO,vO)x(vO)x(uO) + L(u2,v2)x(v2) . x(uﬁ2) (75)
— ZJ(d) X(d) + J(t) X(t) + JOeOX0) 4 J(uZ) X('u2) (76)
or
8 )‘0 1 2 [} o
0 = FHVLT) (VaT)+ 7 [uBe + 24(BagiDap)
p necs nes 2P nes -
+ EZ[W- ]+TV1T )- (3. DTdw)  (17)
:—1 = =1
1 nes
= T [—T(VGT) : (qa(red)) + TBa + Laﬁ - pZ(‘/m : dia)} (78)
i=1

Because the second law of thermodynamics requires that entropy must increase
until it is maximized at equilibrium, it is important to verify that o, > 0. By
manipulating the Stefan-Maxwell equation (17), using (20), and the definition
of the impedance matrix, we may write the diffusion driving force vector as

ncs ncs

;[Ru(f/ja — Via)] = 2[Rii(Df = D])|Va(ln T) (79)

7=1

and taking the reduced form of the heat flux vector (28), we have

ncs ncs

Gatre) = —AVaT —p3 3 [DTRij(Via — Via)| (80)

1=1 5=1

Upon substitution of (79) and (80) into (78), all occurances of the thermal
diffusion coefficients cancel, leaving

o = —/\—(VO,T)~(VC,T) 2D y:Dos)

ncs ncs

= EY Y [RiVia = Via) Vi (81)

=1 j3=1

10



where the vanishing bulk viscosity has been dropped, and may be rewritten as

s o A 2p 2
o = T(VQT) (VT)+T

v LYy [ ffm)?] (2)

11]1

(Daﬁ:Daﬁ)

It is now clear that entropy production is never negative because A, u and Dg >
0 and all other terms occur in quadratic form (thermal diffusion coefficients
may be positive or negative).

Putting the irreversible entropy generation (77) and the entropy flux (58)
into (53) yields

ENTROPY EQUATION

D ncs - 2
TS5 + TVa-(p)_s¥iVia) = —2u6° +24(Day : Da)
=1

+ Vo (MVaT) +V, EDTd,a

+ PVl ) (S DT ) +p L (e di)DY] (89
i=1j5=1
= TgaZLag—va Gu(red) — pz ’ (84)
or
Ds ncs N
pTE + TV&'(ﬂZSiY‘;%O‘)

TCS nes

De - ~
SLALs T RDY (PYifio = pdia) - Via| + Va - (p 3 hiYiVia) (85)

=1

Each of the four fundamental transport coeflicients appearing the equations
(1, Ao, DU , DI) may calculated to any desired accuracy, and in particular
those occuring in (16). Formally, the transport coefficients are calculated by

evaluating the following matrix expressions

11



HOO HOI HOZ HOS HOE XT
HlO Hll H12 H13 Hl{ 0
H20 H21 H22 H23 H2£ 0
HBO H31 H32 H33 HBE 0
H.£0 H-51 H.52 H.53 H.Ef 0
X 0 0 0 0 0
nE+1)=- 00 [o1 [0z p[o3 ¢
HlO Hll H12 H13 HIE
H?O H21 H22 H23 H2E
H30 HSI H32 H33 HSE
H.EO H.fl H'EZ H-E3 H.ff
LOO LOl L02 L03 LO{ 0
LlO Lll L12 13 LIE XT
L2O L21 L22 L23 L2£ 0
L30 L31 L32 L33 L3£ 0
LEO L‘£1 L.62 L.f3 L'56 0
0 X 0 o - 0 0
/\O(E) =- 00 o1 02 103 A
LIO Lll L12 L13 Llf
L20 L21 L22 L23 L2£
L30 L31 L32 L33 LBE
L-EO Llfl L.E2 L.€3 L'EE
LOO LOl L02 L03 LO{ 0
LlO Lll L12 L13 Ll{ XT
LZO L21 L22 L23 L2E 0
L30 L31 L32 L33 L3£ 0
[ L8 [ e .. L& g
2T | & 0 0 o - 0 0
T _ 1
Di (f) = —E)—P 00 o1 o2 703 106
LlO Lll L02 L13 Llf
L20 L21 L22 L23 L2£
LSO L31 L32 L33 LBE
L‘EO Llfl L'€2 L.ES L.EE
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[oo0 gor g0z jo3 | IO A}"

Lo o1z p13 . gl 0

[20 p2t p22 r23 .. 12

L3D L31 L32 L33 L. L35 0

L.ao L.El L.§2 L.E3 Ce. L'fﬁ ()

aT | 6 0 0 0 --- 0 0

M _ 13

Di5(&) = T95p J00 g0l y02 03 . JO¢
AU AY LOZ L13 L. Llé
120 21 r22 23 .. 2%
[30 3t p32 33 . 3¢
L'go Llfl L.£2 L'£3 e L-EE

Formal expressions for the (ncs x nes) matricies H?? (p,q < 2) and L™
(p,qg < 3) are given in the literature! > 13, The variable ¢ denotes the or-
der of the approximation and the vectors X, é;, and A; are given by X =
{XhXZs Y chs}’ 51' = {61'1» 61'27 U a‘si ncs}, Ai - {(61'1"Y1), (5i2_}/1)a Ty (51 nes
Y.cs)}. The superscript T denotes transpose. Note that the first approxima-
tion to both the partial thermal conductivity and thermal diffusion coefficients
vanish identically.
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